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Introduction
Prime numbers have fascinated mathematicians for cen-
turies due to their foundational role in number theory
and their seemingly random distribution. Early mile-
stones include Euclid’s proof of their infinitude and Eu-
ler’s demonstration that the series of prime reciprocals,∑︁

𝑝 prime

1
𝑝
,

diverges, revealing their abundance and hinting at
deeper patterns.
In the 18th century, Gauss and Legendre conjectured
that the number of primes less than 𝑥, denoted 𝜋(𝑥),
follows the approximation

𝜋(𝑥) ∼
∫ 𝑥

2

𝑑𝑡

log 𝑡
.

Though supported by numerical evidence, this con-
jecture remained unproven until later developments.
Chebyshev provided bounds for 𝜋(𝑥) in the 19th cen-
tury, advancing the understanding of prime distribu-
tion.
Riemann’s groundbreaking 1859 paper introduced the
zeta function,

𝜁 (𝑠) =
∞∑︁
𝑛=1

1
𝑛𝑠

, 𝑅𝑒(𝑠) > 1,

and its connection to the distribution of primes. His hy-
pothesis regarding the non-trivial zeros of 𝜁 (𝑠) became
a cornerstone of analytic number theory and remains
an open problem with profound implications.

The
Music
of the
Primes (ˇ

For centuries, mathematicians had been listening
to the primes and hearing only disorganized noise
but Riemann had found new ears with which to
listen to these mysterious tones. Riemann
understood that each zero in the complex plane
represented a unique musical note, with its own
frequency and amplitude. As he analyzed the
zeros, he discovered a stunning pattern: They
were aligned along a critical line, creating a
perfectly balanced orchestra where no note
overpowered the others. This hidden harmony in
the distribution of primes revealed an underlying
order in the seemingly chaotic world of numbers.

The Factorial Function

Euler extended the factorial function 𝑛! = 𝑛(𝑛 −
1) (𝑛 − 2) · · · 1 from the natural numbers 𝑛 to all
real numbers greater than −1 by observing that:

𝑛! =
∫ ∞

0
𝑒−𝑥𝑥𝑛 𝑑𝑥 for 𝑛 ∈ N.

Later, this definition was extended to non-integer
and complex arguments by Gauss, introducing the
function:

Γ(𝑠) =
∫ ∞

0
𝑒−𝑥𝑥𝑠−1 𝑑𝑥 for 𝑠 > 0.

For Euler’s integral on the right side of the equation,
Γ(𝑠) is defined for all real numbers 𝑠 greater than 0.
In fact, it is valid for all complex numbers 𝑠 in the
half-plane Re(𝑠) > 0. Furthermore, Γ(𝑠) = (𝑠− 1)!
whenever 𝑠 is a natural number.

The function Γ(𝑠) is defined in the complex plane
as the analytic continuation of this integral func-
tion. It is a meromorphic function that is holo-
morphic except at 𝑠 = 0,−1,−2, . . . , where it has
simple poles. Moreover, Γ(𝑠) satisfies other impor-
tant identities such as:

Γ(𝑠 + 1) = 𝑠Γ(𝑠). (1)
sin(𝜋𝑠) = 𝜋

Γ(𝑠)Γ(1 − 𝑠) . (2)

Γ(𝑠)Γ
(
𝑠 + 1

2

)
= 21−2𝑠√𝜋Γ(2𝑠). (3)

The Zeta Function as an Integral
Representation

Riemann derived his formula for
∑
𝑛−𝑠 which "re-

mains valid for all s". The derivation begins with
Euler’s integral for Γ(𝑠) and substitution of 𝑛𝑥 for
𝑥: ∫ ∞

0
𝑒−𝑛𝑥𝑥𝑠−1𝑑𝑥 =

Γ(𝑠)
𝑛𝑠

.

For 𝑠 > 0 and 𝑛 = 1, 2, 3, ... Riemann sums this
over 𝑛 and uses

∑∞
𝑟=1 𝑟

−𝑛 = (𝑟 − 1)−1 for |𝑟 | > 1,
to obtain: ∫ ∞

0

𝑥𝑠−1

𝑒𝑥 − 1
𝑑𝑥 = Γ(𝑠)

∞∑︁
𝑛=1

1
𝑛𝑠
.

The key insight comes from considering the contour
integral:∫ +∞

+∞

(−𝑥)𝑠 𝑑𝑥
𝑒𝑥 − 1 · 𝑥 .

Breaking down the integral into three parts, the
middle term as 𝛿 → 0, this term approaches zero:∫ 𝛿

+∞

(−𝑥)𝑠𝑑𝑥
(𝑒𝑥 − 1)𝑥 +

∫
𝐶

(−𝑥)𝑠𝑑𝑥
(𝑒𝑥 − 1)𝑥 +

∫ +∞

𝛿

(−𝑥)𝑠𝑑𝑥
(𝑒𝑥 − 1)𝑥 .

The other two terms combine to give, as
lim𝛿→0:∫ +∞

+∞

(−𝑥)𝑠𝑑𝑥
(𝑒𝑥 − 1)𝑥 = (𝑒𝑖𝜋𝑠 − 𝑒−𝑖𝜋𝑠)

∫ +∞

0

𝑥𝑠−1𝑑𝑥

𝑒𝑥 − 1
.

This leads to the final result:∫ +∞

+∞

(−𝑥)𝑠𝑑𝑥
(𝑒𝑥 − 1)𝑥 = 2𝑖 sin(𝜋𝑠)Γ(𝑠)

∞∑︁
𝑛=1

1
𝑛𝑠
.

When both sides are multiplied by Γ(1−𝑠)/2𝜋𝑖 and
using the identity (2), we obtain the fundamental
representation:

𝜁 (𝑠) = Γ(1 − 𝑠)
2𝜋𝑖

∫ +∞

+∞

(−𝑥)𝑠𝑑𝑥
𝑒𝑥 − 1 · 𝑥 .

The Proof of The Functional
Equation

Riemann evaluated the integral for negative real values
of 𝑠:

𝜁 (𝑠) = Γ(1 − 𝑠)
2𝜋𝑖

∫ +∞

+∞

(−𝑥)𝑠
𝑒𝑥 − 1

𝑑𝑥

𝑥
. (4)

Let 𝐷 denote the domain in the 𝑠-plane which consists
of all points other than those which lie within 𝜀 of the
positive real axis or within 𝜀 of one of the singularities
𝑥 = ±2𝜋𝑖𝑛 of the integrand of (4).
Let 𝜕𝐷 be the boundary of 𝐷 oriented in the usual
way. Then Cauchy’s theorem (disregarding 𝐷’s non-
compactness) gives...

Γ(1 − 𝑠)
2𝜋𝑖

∮
𝜕𝐷

(−𝑥)𝑠
𝑒𝑥 − 1

𝑑𝑥

𝑥
= 0. (5)

Then, the integral splits into components, one compo-
nent of this integral is the integral (4) with the orien-
tation reversed, and the others are integrals over the
circles |𝑥 ± 2𝜋𝑖𝑛| = 𝜀 oriented clockwise. Thus when
the circles are oriented in the usual clockwise sense, (5)
becomes

−𝜁 (𝑠) −
∑︁ Γ(1 − 𝑠)

2𝜋𝑖

∮
|𝑥±2𝜋𝑖𝑛|=𝜀

(−𝑥)𝑠
𝑒𝑥 − 1

𝑑𝑥

𝑥
= 0.

Evaluating the Integrals over the Circles

Integrals can be evaluated
by setting 𝑥 = 2𝜋𝑖𝑛 + 𝑦 for
|𝑦 | = 𝜀 and by the Cauchy
Integral Formula.
Summing over all integers
𝑛 other than 𝑛 = 0 gives:

𝜁 (𝑠) =
∞∑︁
𝑛=1

Γ(1 − 𝑠) [(−2𝜋𝑖𝑛)𝑠−1 + (2𝜋𝑖𝑛)𝑠−1] .

The simplification yields the desired formula:

𝜁 (𝑠) = Γ(1 − 𝑠) (2𝜋)𝑠−12 sin
(𝜋𝑠

2

)
𝜁 (1 − 𝑠). (6)

Riemann uses two of the identities of the factorial func-
tion (2) and (3) and rewrites the functional equation
(6).

Γ

(
𝑠
2

)
𝜋−

𝑠
2𝜁 (𝑠) = Γ

(
1−𝑠
2

)
𝜋−

1−𝑠
2 𝜁 (1 − 𝑠).

Conclusion

The relationship between 𝜁 (𝑠) and 𝜁 (1 − 𝑠) is known
as the functional equation of the zeta function.
To put it plainly, the function on the left side of the
functional equation is unchanged by the substitution
𝑠 = 1 − 𝑠.

The functional equation was established by Riemann in his 1859
paper “On the Number of Primes Less Than a Given Magni-
tude” and used to construct the analytic continuation in the first
place.

Zeros of the Zeta Function and
the Riemann Hypothesis

The functional equation shows that the Zeta function
has zeros at −2,−4,−6, . . . These are called the trivial
zeros.
However, the critical zeros of the Zeta function, which
lie on the critical line, are the values of 𝑠 where 𝜁 (𝑠) =
0 and the real part of 𝑠 is 1

2. The critical line is the
vertical line in the complex plane with the real part
equal to 1

2.
The Zeta function is also zero for other values of 𝑠,
which are called nontrivial zeros. The Riemann Hy-
pothesis is concerned with the locations of these non-
trivial zeros and states that:

The real part of every nontrivial zero of the Riemann
Zeta function is 1

2.

In 1914, G. H. Hardy proved that 𝜁
(1
2 + 𝑖𝑡

)
has infinitely many real

zeros. Thus, if the hypothesis is correct, all the nontrivial zeros lie
on the critical line consisting of the complex numbers 1

2 + 𝑖𝑡, where
𝑡 is a real number and 𝑖 is the imaginary unit.

The Function 𝜉 (𝑠)

The function Γ
(
𝑠
2
)
𝜋−

𝑠
2𝜁 (𝑠), which occurs in the

symmetrical form of the functional equation, has
poles at 𝑠 = 0 and 𝑠 = 1. Riemann multiplies it by
𝑠(𝑠−1)

2 and defines:

𝜉 (𝑠) = 𝑠(𝑠 − 1)
2

Γ

(𝑠
2

)
𝜋−

𝑠
2𝜁 (𝑠). (7)

Then, the 𝜉 (𝑠) is an entire function, and the func-
tional equation of the zeta function is equivalent to
𝜉 (𝑠) = 𝜉 (1 − 𝑠). 𝜉 (𝑠) can be expanded as an infi-
nite product:

𝜉 (𝑠) = 𝜉 (0)
∏
𝜌

(
1 − 𝑠

𝜌

)
, (8)

where 𝜌’s are non-trivial zeros of 𝜁 (𝑠) and 𝜉 (0) = 1
2.

The Connection Between Zeta and Primes

The essence of the relationship between 𝜁 (𝑠) and
the prime numbers is the Euler product formula:

𝜁 (𝑠) =
∏
𝑝

1
1 − 1

𝑝𝑠

, 𝑅𝑒(𝑠) > 1.

Taking the 𝑙𝑜𝑔 of the both sides and using the series
expansion of 𝑙𝑜𝑔(1 − 𝑥):

log 𝜁 (𝑠) =
∑︁
𝑝

[∑︁
𝑛

1
𝑛
𝑝−𝑛𝑠

]
, 𝑅𝑒(𝑠) > 1.

It will be convenient in what follows to write this
sum as Stieltjes Integral:

log 𝜁 (𝑠) =
∫ ∞

0
𝑥−𝑠𝑑𝐽 (𝑥) , 𝑅𝑒(𝑠) > 1.

A formula for 𝐽 (𝑥):

𝐽 (𝑥) = 1
2


∑︁
𝑝𝑛<𝑥

1
𝑛
+
∑︁
𝑝𝑛≤𝑥

1
𝑛

 .

Preliminary

The Offset Logarithmic Integral: The offset
logarithmic integral or Eulerian logarithm is defined
as:

Li(𝑥) =
∫ 𝑥

0

𝑑𝑡

log 𝑡
, (𝑥 > 1).

The Logarithmic Integral:

li(𝑥) =
∫ 𝑥

2

𝑑𝑡

log 𝑡
= Li(𝑥) − Li(2).

This function approximates the number of primes
less than or equal to 𝑥, and it grows asymptotically
like 𝑥

log 𝑥 .

The Möbius Function:
For 𝑛 > 1, let 𝑛 = 𝑝

𝑎1
1 . . . 𝑝

𝑎𝑘
𝑘

.

𝜇(𝑛) =


1 if 𝑛 = 1,
(−1)𝑘 if 𝑎1 = 𝑎2 = · · · = 𝑎𝑘 = 1,
0 if 𝑛 > 1 has a square factor.

Deriving a Formula for J(X)
Combination of two fundamental formulas for 𝜉 (𝑠), (7)
and (8) through logarithmic transformation, yields:

log 𝜁 (𝑠) = log 𝜉 (0) +
∑︁
𝜌

log
(
1 − 𝑠

𝜌

)
− log Γ

(𝑠
2

)
+ 𝑠

2
log 𝜋 − log(𝑠 − 1).

(9)

Riemann’s formula for 𝐽 (𝑥), which is the main result of
his paper, is obtained by substituting this formula for
log 𝜁 (𝑠) in the formula:

𝐽 (𝑥) = 1
2𝜋𝑖

∫ 𝑎+𝑖∞

𝑎−𝑖∞
log 𝜁 (𝑠)𝑥𝑠𝑑𝑠

𝑠
(𝑎 > 1).

Riemann first integrates by parts to obtain:

𝐽 (𝑥) = − 1
2𝜋𝑖

· 1
log 𝑥

∫ 𝑎+𝑖∞

𝑎−𝑖∞

𝑑

𝑑𝑠

[
log 𝜁 (𝑠)

𝑠

]
𝑥𝑠𝑑𝑠 (𝑎 > 1).

(10)
The substitution of (9) to (10) express 𝐽 (𝑥) as five

terms and the derivation of Riemann’s Formula for 𝐽 (𝑥)
depends on the evaluation of these five definite integrals.
Combination of the evaluation of the terms in the for-
mula for 𝐽 (𝑥) gives the final result which is Riemann’s
formula. This analytic formula for 𝐽 (𝑥) is the principal
result of his paper.

𝐽 (𝑥) = Li(𝑥) −
∑︁

Im 𝜌>0

[
Li(𝑥𝜌) + Li(𝑥1−𝜌)

]
+
∫ ∞

𝑥

𝑑𝑡

𝑡 (𝑡2 − 1) log 𝑡
+ log 𝜉 (0), (𝑥 > 1).

Prime Number Theorem

Definition (Prime-counting function): We
define P as the set of all prime numbers and 𝜋(𝑥)
as the number of primes less than or equal to 𝑥, i.e.

𝜋(𝑥) = |{𝑝 ∈ P : 𝑝 ≤ 𝑥}|.
Theorem: The prime counting function 𝜋(𝑥) is
asymptotically equal to the ratio 𝑥/log 𝑥, i.e.

𝜋(𝑥) ∼ 𝑥

log 𝑥
(𝑥 → ∞).

The Formula for 𝜋(𝑥)

𝐽 (𝑥) = 𝜋(𝑥) + 1
2
𝜋(𝑥1/2) + 1

3
𝜋(𝑥1/3) + · · · + 1

𝑛
𝜋(𝑥1/𝑛) + · · ·

𝜋(𝑥) = 𝐽 (𝑥) − 1
2
𝐽 (𝑥1/2) − 1

3
𝐽 (𝑥1/3) − 1

5
𝐽 (𝑥1/5) + 1

6
𝐽 (𝑥1/6) + · · · + 𝜇(𝑛)

𝑛
𝐽 (𝑥1/𝑛) + · · ·

Results

The Riemann hypothesis implies a much tighter bound
on the error in the estimate for 𝜋(𝑥):

𝜋(𝑥) = 𝑙𝑖(𝑥) + O(
√
𝑥 log 𝑥)

Riemann’s Error Gauss’s Error

𝜋(𝑥) ∼ li(𝑥) +
∞∑︁
𝑛=2

𝜇(𝑛)
𝑛

li(𝑥 1
𝑛) 𝜋(𝑥) ∼

∫ 𝑥

2

𝑑𝑡

log 𝑡
= li(𝑥)

x Riemann’s Error Gauss’s Error
1,000,000 30 130
2,000,000 -9 122
3,000,000 0 155
4,000,000 33 206
5,000,000 -64 125
6,000,000 24 228
7,000,000 -38 179
8,000,000 -6 223
9,000,000 -53 187
10,000,000 88 339

Riemann Hypotesis
Chosen as one of the seven "Millennium Prize
Problems" by the Clay Mathematics Institute and
formulated in Riemann’s 1859 paper, it asserts that
all the ‘non-obvious’ zeros of the zeta function are
complex numbers with real part 1

2. The hypothesis
has remained unsolved for over 160 years and the
solution of this deep conjecture is accompanied by
a prize money of 1 million dollars, underlining its
importance in modern mathematics.
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