Introduction

Prime numbers have fascinated mathematicians for cen-
turies due to their foundational role in number theory
and their seemingly random distribution. Early mile-
stones include Euclid’s proof of their infinitude and Eu-
ler’s demonstration that the series of prime reciprocals,
3 !

p prime P

diverges, revealing their abundance and hinting at
deeper patterns.

In the 18th century, Gauss and Legendre conjectured

that the number of primes less than x, denoted m(x),

follows the approximation
X

m(x) ~ i
, logt
Though supported by numerical evidence, this con-
jecture remained unproven until later developments.
Chebyshev provided bounds for 7 (x) in the 19th cen-
tury, advancing the understanding of prime distribu-
tion.
Riemann’s groundbreaking 1859 paper introduced the

zeta function,

£(s) = Z% [Re(s) > 1,
n=1
and its connection to the distribution of primes. His hy-
pothesis regarding the non-trivial zeros of £(s) became
a cornerstone of analytic number theory and remains
an open problem with profound implications.
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Y

For centuries, mathematicians had been listening
to the primes and hearing only disorganized noise
but Riemann had found new ears with which to
listen to these mysterious tones. Riemann
understood that each zero in the complex plane

The : . L
i represented a unique musical note, with its own
Music .
of the frequency and amplitude. As he analyzed the
: zeros, he discovered a stunning pattern: They
Primes )

were aligned along a critical line, creating a
perfectly balanced orchestra where no note
overpowered the others. This hidden harmony in
the distribution of primes revealed an underlying
order in the seemingly chaotic world of numbers.

The Factorial Function

Euler extended the factorial function n! = n(n —
1)(n —2)---1 from the natural numbers n to all
real numbers greater than —1 by observing that:

0
nl = / e *x"dx formn e N.
0

Later, this definition was extended to non-integer
and complex arguments by Gauss, introducing the
function:

F(s):/ e x5 tdx for s>0.
0
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The Zeta Function as an Integral
Representation

Riemann derived his formula for ) n™° which "re-
mains valid for all s". The derivation begins with
Euler’s integral for I'(s) and substitution of nx for

X:
/ e—nxxs—ldx — F(S)
0 ns

For s > 0 and n = 1,2, 3,... Riemann sums this

over n and uses Yoo, 7" = (r=1)71 for |r| > 1,

to obtain:
0 x5l = 1
dx =T —.
/() er — 1 * (5) ; ns

The key insight comes from considering the contour
integral:

/ T (—x)* dx . oo
+

w e*—1-x

Breaking down the integral into three parts, the
middle term as § — 0, this term approaches zero:
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Z.eros of the Zeta Function and
the Riemann Hypothesis

The functional equation shows that the Zeta function
has zeros at —2, —4, —06, ... These are called the trivial
2€T08.

However, the critical zeros of the Zeta function, which
lie on the critical line, are the values of s where (s) =
0 and the real part of s is % The critical line is the
vertical line in the complex plane with the real part
equal to %

The Zeta function is also zero for other values of s,
which are called nontrivial zeros. The Riemann Hy-
pothesis is concerned with the locations of these non-

trivial zeros and states that:

The real part of every nontrivial zero of the Riemann

Zeta function is %

In 1914, G. H. Hardy proved that £ (% + it) has infinitely many real
zeros. Thus, if the hypothesis is correct, all the nontrivial zeros lie

on the critical line consisting of the complex numbers %+ it, where

t is a real number and i is the imaginary unit.

° (—x)%dx (—x)’dx t (—x)%dx
too (68— 1)x " /C (e — 1)x ¥ /5 (e —1)x

The other two terms combine to give, as
lim5_>0:

+00 (—X)de . i +00 xs—ldx
= ("™ —e™') :
teo (e =1)x 0 e*—1

This leads to the final result:
¥ (—x)d o 1
/ (=x) dx = 2i sin(ms)I'(s) Z —.
+ n=1 n’

o (e¥=1)x

When both sides are multiplied by I'(1—s) /271 and
using the identity (2), we obtain the fundamental
representation:

Tl =s) [ (=x)%dx
£(s) = 27l /+OO e

¥—1-x

The Proof of The Functional
Equation

Riemann evaluated the integral for negative real values

of s:
I'(1-s) 7 (=x)%dx
(o) =5 [ (4)

xX_1x

Let D denote the domain in the s-plane which consists
of all points other than those which lie within & of the
positive real axis or within & of one of the singularities
x = +2xin of the integrand of (4).

Let 0D be the boundary of D oriented in the usual

way. Then Cauchy’s theorem (disregarding D’s non-
compactness) gives...

['(1-1s) (—x)*dx

271 apeX—1x

0. (5)

Then, the integral splits into components, one compo-
nent of this integral is the integral (4) with the orien-
tation reversed, and the others are integrals over the
circles |x + 2min| = & oriented clockwise. Thus when
the circles are oriented in the usual clockwise sense, (5)

The Function &(s)

The function I (3) 7727 (s), which occurs in the
symmetrical form of the functional equation, has

poles at s = 0 and s = 1. Riemann multiplies it by
s(s—1) .
and defines:

2
£ =0 (k. (1)

Then, the £(s) is an entire function, and the func-
tional equation of the zeta function is equivalent to

E(s) =&(1—s). £(s) can be expanded as an infi-

nite product:

£5)=£0)[ | (1 - g) (8)

where p’s are non-trivial zeros of £(s) and £(0) = %

The Connection Between Zeta and Primes

The essence of the relationship between (s) and
the prime numbers is the Euler product formula:

1

J(s) = l_[ _1 ,Re(s) > 1.
p p

Taking the log of the both sides and using the series

expansion of log(1 — x):

1

log £(s) = 2 sz_”s ,Re(s) > 1.

p | n
It will be convenient in what follows to write this
sum as otieltjes Integral:

log £(s) :/ x°dJ(x) ,Re(s)>1.
0
A formula for J(x):

=53 >

Preliminary

The Offset Logarithmic Integral: The offset
logarithmic integral or Eulerian logarithm is defined
as:

t o dt

Li(x) = - (x> 1).
o logt

The Logarithmic Integral:

. odi . .
li(x) = —— = Li(x) — Li(2).
9 1()g;t
This function approximates the number of primes
less than or equal to x, and it grows asymptotically

like ] 22
0g X

The Mobius Function:
Forn > 1, let n=pi"...p}"

.

1 itn=1,
pn) =4 (=D* ifar=ar=---=a; =1,
0 if n > 1 has a square factor.

\

Deriving a Formula for J(X)

Combination of two fundamental formulas for &(s), (7)
and (8) through logarithmic transformation, yields:

log Z(s) =logé&(0)+ ) log (1 — i)
; g (9)

—log I’ (%) +%10g7r — log(s —1).

Riemann’s formula for J(x), which is the main result of
his paper, is obtained by substituting this formula for
log £(s) in the formula:

1 a+ioo d
J(x) = Q_m/ log {(s)xs?s (a >1).

—J00

Riemann first integrates by parts to obtain:

1 1 /‘”ioo d llogg”(s)

J(x) = ——
(x) 2ni logx J,jeo dS S

]xsds (a >1).

(10)
The substitution of (9) to (10) express J(x) as five
terms and the derivation of Riemann’s Formula for J(x)
depends on the evaluation of these five definite integrals.
Combination of the evaluation of the terms in the for-
mula for J(x) gives the final result which is Riemann’s
formula. This analytic formula for J(x) is the principal
result of his paper.

J(x) = Li(x) - Z [Li(x?) + Li(x' )]

Im p>0

= dt
+/x e T{O NN

Prime Number Theorem

Definition (Prime-counting function): We
define P as the set of all prime numbers and m(x)
as the number of primes less than or equal to x, i.e.

n(x) =Hp eP:p <xjl

Theorem: The prime counting function m(x) is
asymptotically equal to the ratio x/log x, i.e.

For Euler’s integral on the right side of the equation,
I'(s) is defined for all real numbers s greater than 0.
In fact, it is valid for all complex numbers s in the
half-plane Re(s) > 0. Furthermore, I'(s) = (s —1)!
whenever s is a natural number.

The function I'(s) is defined in the complex plane
as the analytic continuation of this integral func-
tion. It is a meromorphic function that is holo-
morphic except at s = 0,—1, -2, ..., where it has
simple poles. Moreover, I'(s) satisfies other impor-
tant identities such as:

T(s+1)=sI(s). (1)

sin(zrs) =

T
C(s)[(1—s) (2)

r(s)r(s + %) = 21755/ (2s). (3)
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becomes Pl P m(x) ~ % (x = ).
['(1-1y) (—x)°® dx 054
~L(s) = ) —— 2
27 lx+2nin|=¢ €~ — 1 x Th F l f ( )
€ rormula 10or m\x
Evaluating the Integrals over the Circles
_ Lo oL s 1 im
Integrals can be evaluated i_ J(x) = m(x) + §7r(x ) + g”(x oot Zﬂ(x Y+
by setting x = 2min + y for 1 1 1 1 u(n)
|v| = € and by the Cauchy I N m(x) =J(x) — 5](351/2) - gf(xl/g) - gJ(Xw)) + 6](351/6) Tt » J(Xl/n) +---
Integral Formula. "_“!___’m
Summing over all integers I'
n other than n = 0 gives: : Results Riemann Hypotesis

o 4
_ . \s—1 .+ \s—1
(s) = Z C(1 = s)[(=27in)™" + (2min)™"]. The Riemann hypothesis implies a much tighter bound
n=1

on the error in the estimate for m(x):

n(x) =li(x) + O(+\/x log x)
Gauss’s Error

*odt
e |
o logt 1(x)

Chosen as one of the seven "Millennium Prize
Problems" by the Clay Mathematics Institute and
formulated in Riemann’s 1859 paper, it asserts that
all the ‘non-obvious’ zeros of the zeta function are
complex numbers with real part % The hypothesis
has remained unsolved for over 160 years and the
solution of this deep conjecture is accompanied by
a prize money of 1 million dollars, underlining its
importance in modern mathematics.

The simplification yields the desired formula:

£(s) =T(1-5)(2m)*125sin (%) J(1—y). (6)

Riemann uses two of the identities of the factorial func-
tion (2) and (3) and rewrites the functional equation

(6).

Riemann’s Error

m(x) ~ li(x) + “f/l”) li(xh) | w(x) ~
n=2

X Riemann’s Error Gauss’s Error

F(%)ﬂ_%g(s) = F(%)n—%g(l —5).

1,000,000 30 130
2,000,000 -9 122
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