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Motivation

Determining all rational solutions to a cubic equation

in two variables remains an open problem in

mathematics. While rational solutions to polynomial

equations of lower degrees can be systematically

determined, cubic equations in two variables are the

first case for which no general method exists.

Furthermore, there is currently no general algorithm

for determining whether a given cubic equation has a

finite or an infinite number of rational solutions. The

Birch and Swinnerton-Dyer Conjecture (BSD), one

of the seven Millennium Prize Problems, offers a

potential algorithm for addressing this issue. If

proven, the BSD conjecture would provide a way to

determine whether the number of rational solutions

is finite or infinite.

Elliptic Curves

An elliptic curve is a smooth algebraic curve,

defined by the general equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ K (the field of

definition).

If the field has characteristic not equal to 2 or 3, the

equation with change of variables can be

transformed into the Weierstrass normal form:

y2 = x3 + Ax + B,

where A,B ∈ K.

Discriminant and Smoothness

The smoothness of an elliptic curve is determined by

its discriminant, defined as:

∆′ = 4A3 + 27B2,

∆ = −16∆′.

• If ∆′ = 4A3 + 27B2 = 0, the curve has

singularities (e.g., a cusp or self-intersection).

• If ∆′ ̸= 0, the curve is smooth, meaning it has

no singular points.

This condition is equivalent to the cubic polynomial

f(x) = x3 + Ax + B having no double roots.

Thus, E is an elliptic curve in the field K if and

only if ∆′ ̸= 0.

Elliptic Curves as Groups

Let E be an elliptic curve given by a Weierstrass

equation in the projective form:

y2z = x3 + axz2 + bz3.

Thus, E ⊂ P2 consists of points P = (x, y)

satisfying the Weierstrass equation, together with

the point O = [0 : 1 : 0] at infinity.

Let L ⊂ P2 be a line. Since the Weierstrass

equation has degree 3, the line L intersects E at

exactly three points, say P , Q, and R, counted

with multiplicities.

Composition Law: The points P , Q, and R

are related via the group law, defining the addition

operation on the elliptic curve.

Figure 1: Composition law.

The composition law has the following properties:

(a) If a line L intersects E at the (not necessarily

distinct) points P,Q,R, then:

(P ⊕ Q) ⊕ R = O.

(b) P ⊕ O = P for all P ∈ E.

(c) P ⊕ Q = Q ⊕ P for all P,Q ∈ E.

(d) Let P ∈ E. There exists a point ⊖P , satisfying:

P ⊕ (⊖P ) = O.

(e) Let P,Q,R ∈ E. Then:

(P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R).

In other words, the composition law makes E into

an abelian group with the identity element O.

Group Law Algorithm

Let E be an elliptic curve given by a Weierstrass

equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

(a) Let P0 = (x0, y0). Then:

−P0 = (x0,−y0 − a1x0 − a3).

(b) Next, let P1 + P2 = P3 with

Pi = (xi, yi) ∈ E for i = 1, 2, 3.

• If x1 = x2 and y1 + y2 + a1x2 + a3 = 0,

then:

P1 + P2 = O.

• Otherwise, define λ and ν by the following

formulas:

λ ν

x1 ̸= x2

y2 − y1

x2 − x1

y1x2 − y2x1

x2 − x1

x1 = x2

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

Then y = λx + ν is the line through P1 and P2,

or tangent to E if P1 = P2.

Mordell’s Theorem

For a rational elliptic curve E, the group of rational

points on E is denoted by E(Q).

Mordell’s Theorem (1922): The group

E(Q) of rational points on E is finitely generated.

Since E(Q) is a finitely generated abelian group, we

have:

E(Q) ∼= Zr ⊕ E(Q)tors

for some r ≥ 0, and E(Q)tors is a finite abelian

group, referred as the torsion part of E(Q).

Algebraic Rank: Let E be an elliptic curve

defined over the rational numbers Q. The algebraic

rank of E, denoted by r, is the rank of the finitely

generated abelian group E(Q), which is given by

above.

• If r = 0, the group E(Q) is finite, and E has

only finitely many rational points.

• If r ≥ 1, E has infinitely many rational points.

The rank of E measures the number of points

needed to generate all rational points on the curve.

By Mordell’s Theorem, this number is always

finite.

Mazur’s Theorem (1977):
1. E(Q)tors is a cyclic group of order n, where

1 ≤ n ≤ 10 or n = 12, or

2. E(Q)tors is isomorphic to one of the following

groups:

Z/2Z × Z/2mZ, for 1 ≤ m ≤ 4.

Elliptic Curves over Fp

Now, we consider the elliptic curves defined over

finite fields and their points.

Let us take the elliptic curve as

E : y2 = x3 + Ax + B.

For any prime p, we look at the solutions over the

finite field Fp. Reduce E modulo p, that is, reduce

the coefficients of the equation modulo p and write

y2 ≡ x3 + Ax + B (mod p).

Let us examine the solutions of this equation modulo

p (in fact, this operation might not make sense if

the coefficients of the equation are not integers. For

now, let us assume A and B are integers). We

denote the set of solutions by E(Fp).

However, reducing modulo p does not always result

in an elliptic curve, as the discriminant of the

equation modulo p might be zero. If p > 2 divides

the discriminant of E, the reduction of E modulo p

produces a singular curve; otherwise, it defines an

elliptic curve over Fp.

Definition: Let ∆ denote the discriminant of E.

• If p ∤ ∆, then p is said to have good reduction.

• If p | ∆, then p is said to have bad reduction.

For any elliptic curve E, there are only finitely many

primes p with bad reduction, specifically the prime

divisors of ∆.

Hasse’s Theorem

Hasse’s Theorem (1933): Let E be a

rational elliptic curve, and let p > 2 be a prime with

good reduction for E. Then the following inequality

holds:

|p + 1 − #E(Fp)| ≤ 2
√
p.

Example: Consider the elliptic curve E given by:

y2 = x3 + 1.

For a prime p > 3, we compute the solutions of this

equation modulo p to determine #E(Fp), the

number of points on E over Fp. Using Hasse’s

Theorem, we know that:

p + 1 − 2
√
p ≤ #E(Fp) ≤ p + 1 + 2

√
p.

Prime p E(Fp) Count Hasse Lower Bound Hasse Upper Bound In Bounds

5 6 1.53 10.47 Yes

7 12 2.71 13.29 Yes

11 12 5.37 18.63 Yes

13 12 6.79 21.21 Yes

17 18 9.75 26.25 Yes

19 12 11.28 28.72 Yes

23 24 14.41 33.59 Yes

29 30 19.23 40.77 Yes

31 36 20.86 43.14 Yes

37 48 25.83 50.17 Yes

Table 1: Elliptic Curve Point Counts and Hasse
Bounds

The BSD Conjecture

In 1960, Birch and Swinnerton-Dyer computed ranks

of elliptic curves and the number of solutions modulo

p on these curves. They observed that the behavior

of #E(Fp)/p correlates with the rank r of the

curve. This insight led them to propose the famous

conjecture:∏
p≤X

#E(Fp)

p
∼ c · (logX)r,

where c is a constant depending on the curve E,

and r is its rank.

Birch and Swinnerton-Dyer also gave an explicit

expression for c in terms of E; this is called the

strong form of the conjecture.

L-function and Analytic Rank

The L-function of an elliptic curve E is defined as:

L(E, s) =
∏
p|∆

1
1−app−s

∏
p∤∆

1
1−app−s+p1−2s

where, ap = p + 1 − #E(Fp).

L(E, s) can also be expressed as a Dirichlet series:

L(E, s) =
∞∑

n=1

an

ns
,

where an are coefficients determined by the ap

values of the prime factors of n.

Dirichlet Series Convergence: Let

L(E, s) denote the Dirichlet series defined as:

L(E, s) =
∞∑

n=1

an

ns
, for Re(s) >

3

2
.

The series converges absolutely for Re(s) > 3
2
by

Hasse’s Theorem and defines an analytic function in

the half-plane

H = {s ∈ C | Re(s) > 3
2
}.

Taylor Series Expansion: The function

L(E, s) is analytic in the half-plane H . While a

Taylor series expansion in H is possible, the point

s = 1 does not belong to H , so a direct expansion

around s = 1 cannot be performed.

Wiles-Taylor Theorem (1995): Let E be

an elliptic curve defined over Q. According to the

Wiles-Taylor theorem, L(E, s) can be analytically

continued to the entire complex plane C.
This implies that L(E, s) is analytic so is

differentiable at s = 1.

Analytic Rank: The analytic continuation

allows the Taylor series expansion of L(E, s)

around s = 1:

L(E, s) = c(s − 1)m + k1(s − 1)m+1 + . . .

where c ̸= 0, and the analytic rank ran of E is m.

If L(E, 1) ̸= 0, then the analytic rank is 0.

Modern Formulation

When we substitute s = 1 into the good reduction

part of the L-function, we get

L(E, 1) ≈
∏
p≤x

p

#E(Fp)
,

where p runs over all primes less than the given x.

Here, notice that this is the reciprocal of∏
p≤x

#E(Fp)

p
.

Now, we can give the modern formulation of the

Birch and Swinnerton-Dyer Conjecture.

BSD Conjecture (1963)
Let E be an elliptic curve over Q. Then the algebraic

and analytic ranks of E are the same.

The Birch and Swinnerton-Dyer conjecture

immediately implies that an elliptic curve E has

infinitely many rational points if and only if

L(E, 1) = 0.

The conjecture, made in the 1960’s, has been

studied by many mathematicians over four decades.

Wiles et al.’s work on modularity in late 1999, along

with earlier contributions from Gross, Zagier,

Kolyvagin, and others, proved a partial result toward

the conjecture.

Theorem: Suppose E is an elliptic curve over Q
and that ran ≤ 1. Then the algebraic and analytic

ranks of E are the same.

The Power of BSD

Example 1 r = 0:
Objective: Show that L(E, 1) ̸= 0 for

E : y2 = x3 + 1 with r = 0.

Method: Compute

L(E, 1) ≈
∏

p≤1000

p

#E(Fp)
.

Result: The value is approximately
0.5276016202421178.

Interpretation: This confirms that r = 0.

Since r = 0, E(Q) contains only a finite group of

points which is the E(Q)tors, and we can show that

E(Q) ∼= Z/6Z.
The points of E(Q) are

{(0, 1), (0,−1), (2, 3), (2,−3), (−1, 0),O}.

Example 2 r = 2:
Objective: Verify L(E, 1) = 0, L′(E, 1) = 0,

L′′(E, 1) ̸= 0 for E : y2 = x3 − 342x.

Method: Compute the L-series and the derivatives

at s = 1 using finite differences (h = 10−5).

Result:

L(E, 1) ≈ −1.16658388158845 × 10−18,

L′(E, 1) ≈ −1.59460547815251 × 10−9,

L′′(E, 1) ≈ 12.7703039565201.

Interpretation: This confirms that r = 2.

Now, for E : y2 = x3 − 342x with rank r = 2,

consider the product∏
p≤1000

#E(Fp)

p
,

and dividing it by log2 1000, yields a constant.

Result: The value is approximately
0.6558212571499893.

Interpretation: The normalized product is

constant, confirming the prediction of the BSD

conjecture in its classical formulation with r = 2 for

this example.

For the above example, we can show that

E(Q)tors ∼= Z/2Z × Z/2Z.
The points of E(Q)tors are

{(34, 0), (−34, 0), (0, 0),O}.
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