Elliptic Curves and the Birch and Swinnerton-Dyer Conjecture

Motivation

Determining all rational solutions to a cubic equation
in two variables remains an open problem in
mathematics. While rational solutions to polynomial
equations of lower degrees can be systematically
determined, cubic equations in two variables are the
first case for which no general method exists.
Furthermore, there is currently no general algorithm
for determining whether a given cubic equation has a
finite or an infinite number of rational solutions. The
Birch and Swinnerton-Dyer Conjecture (BSD), one
of the seven Millennium Prize Problems, offers a
potential algorithm for addressing this issue. If
proven, the BSD conjecture would provide a way to
determine whether the number of rational solutions
is finite or infinite.

Elliptic Curves

An elliptic curve is a smooth algebraic curve,
defined by the general equation:

y? + a1y + asy = x> + axx? + asx + ag,

where a1, as, a3, ay, ag € K (the field of
definition).

If the field has characteristic not equal to 2 or 3, the
equation with change of variables can be
transformed into the Weierstrass normal form:

yzzm?’—l—Aa’:—l—B,
where A, B € K.

Discriminant and Smoothness

The smoothness of an elliptic curve is determined by
its discriminant, defined as:

A" = 4A° + 27B>,
A = —16A’.

o If A’ =4A3 + 27B? = 0, the curve has
singularities (e.g., a cusp or self-intersection).
o If A’ #£ 0, the curve is smooth, meaning it has

no singular points.

This condition is equivalent to the cubic polynomial

f(x) = x> + Az + B having no double roots.

Thus, E is an elliptic curve in the field K if and
only if A’ #£ 0.

Elliptic Curves as Groups

Let E be an elliptic curve given by a Weierstrass
equation in the projective form:

yzz — 2%+ axz?® + bz’.

Thus, E C P? consists of points P = (x, y)
satisfying the Weierstrass equation, together with
the point O = [0 : 1 : 0] at infinity.

Let L C P? be a line. Since the Weierstrass
equation has degree 3, the line L intersects E at
exactly three points, say P, Q, and R, counted
with multiplicities.

Composition Law: The points P, Q, and R
are related via the group law, defining the addition
operation on the elliptic curve.

Figure 1. Composition law.

The composition law has the following properties:

(a) If aline L intersects E at the (not necessarily
distinct) points P, Q, R, then:

(P®Q)® R = 0.
(b) POO =Pforal P E.

(c) PEQ=Q® P forall P,Q € E.
(d) Let P € E. There exists a point © P, satisfying:

P& (6P) =0.
(e) Let P,Q, R € E. Then:
(POQ)PR=P3(QDR).

In other words, the composition law makes E into
an abelian group with the identity element O.

Group Law Algorithm

Let E be an elliptic curve given by a Weierstrass
equation:

FE y2 + a1xy + azy = o -+ az.’lzz + asx + ag.
(a) Let Py = (xg,yo). Then:
—Py = (T, —Yo — a1xTo — a3).

(b) Next, let P1 —|— P2 = P3 with
P, = (iI)z,yz) € FEfor:=1,2,3.

¢ Ifxy =xzand y; + y2 + a1x2 + az = 0,

then:
P1 —|— P2 — O.
® Otherwise, define A and v by the following
formulas:
A v
T, & T Y2 — Y12 — Y2y

5 Lo — L 5 Lo — L
3x] + 2a2x1 + a4 — a1y1 | —x] + a4x + 2a¢ — azy,

2y1 + a1x1 + as 2y; + a1 + as

L1 = I2

Then y = Ax + v is the line through P; and P,
or tangent to F if P, = P5.

Mordell’'s Theorem

For a rational elliptic curve E, the group of rational
points on E is denoted by E(Q).

Mordell’s Theorem (1922): The group
E(Q) of rational points on E is finitely generated.

Since E(Q) is a finitely generated abelian group, we
have:

EQ) = 7Z" & E(Q)tors
for some 7 > 0, and E(Q)qs is a finite abelian
group, referred as the torsion part of E(Q).

Algebraic Rank: Let E be an elliptic curve
defined over the rational numbers Q. The algebraic
rank of E/, denoted by r, is the rank of the finitely
generated abelian group E(Q), which is given by

above.

o If r = 0, the group E(Q) is finite, and E has
only finitely many rational points.
e If » > 1, E has infinitely many rational points.

The rank of . measures the number of points
needed to generate all rational points on the curve.
By Mordell’s Theorem, this number is always
finite.

Mazur’'s Theorem (1977):

1. E(Q)ors is a cyclic group of order n, where
1<n<10orn =12, or

2. E(Q)tors is isomorphic to one of the following
groups:

7./27 X Z./2mZ, forl < m < 4.

Elliptic Curves over [,

Now, we consider the elliptic curves defined over
finite fields and their points.

Let us take the elliptic curve as
E:yzzw?’—l—Aa:—l—B.

For any prime p, we look at the solutions over the
finite field IF,. Reduce £ modulo p, that is, reduce
the coefficients of the equation modulo p and write
y’=a°+ Ax + B (mod p).
Let us examine the solutions of this equation modulo
p (in fact, this operation might not make sense if
the coefficients of the equation are not integers. For
now, let us assume A and B are integers). We
denote the set of solutions by E(IF)).

However, reducing modulo p does not always result
in an elliptic curve, as the discriminant of the
equation modulo p might be zero. If p > 2 divides
the discriminant of F, the reduction of 2 modulo p
produces a singular curve; otherwise, it defines an
elliptic curve over Iy,

Definition: Let A denote the discriminant of E.

e Ifpt A, then p is said to have good reduction.
e If p| A, then p is said to have bad reduction.

For any elliptic curve E, there are only finitely many
primes p with bad reduction, specifically the prime

divisors of A.

Hasse’s Theorem
Hasse's Theorem (1933): Let E be a

rational elliptic curve, and let p > 2 be a prime with
good reduction for E/. Then the following inequality

holds:
p+1— #E(F,)| < 21/p.
Example: Consider the elliptic curve E given by:
y2 = x> + 1.

For a prime p > 3, we compute the solutions of this
equation modulo p to determine #E(F,), the
number of points on E over [F,. Using Hasse's
Theorem, we know that:

p+1—2yp < #E(Fp) <p+1+2p.

Prime p| E(F,) Count| Hasse Lower Bound Hasse Upper Bound In Bounds
5 6 1.53 10.47 Yes
I 12 2.71 13.29 Yes
11 12 5.37 18.63 Yes
13 12 6.79 21.21 Yes
17 18 9.75 26.25 Yes
19 12 11.28 28.72 Yes
23 24 14.41 33.59 Yes
29 30 19.23 40.77 Yes
31 36 20.86 43.14 Yes
37 48 25.83 50.17 Yes

Table 1: Elliptic Curve Point Counts and Hasse
Bounds

The BSD Conjecture

In 1960, Birch and Swinnerton-Dyer computed ranks
of elliptic curves and the number of solutions modulo
p on these curves. They observed that the behavior

of #E(F,)/p correlates with the rank 7 of the
curve. This insight led them to propose the famous

conjecture:
E(IF
11 #OED . (log X)",
p<X p

where ¢ is a constant depending on the curve F,
and 7 is its rank.

Birch and Swinnerton-Dyer also gave an explicit
expression for ¢ in terms of E; this is called the
strong form of the conjecture.

L-function and Analytic Rank

The L-function of an elliptic curve E is defined as:

_ 1 1
L(E7 S) T p1|_£ 1_app—s plg 1_app—s_|_p1—2s

where, ap, = p+ 1 — #E(F),).

L(E, s) can also be expressed as a Dirichlet series:

© @) an
L(E,s) =) —,
n—=1 n

where a,, are coefficients determined by the a,,
values of the prime factors of n.

Dirichlet Series Convergence: Let
L(E, s) denote the Dirichlet series defined as:

oo

an
L(E7 8) — Z;’

3
for Re(s) > —.
2
n=1
The series converges absolutely for Re(s) > % by
Hasse's Theorem and defines an analytic function in

the half-plane
HZ{SEC|R6(8)>%}.

Taylor Series Expansion: The function
L(E, s) is analytic in the half-plane H. While a
Taylor series expansion in H is possible, the point
s = 1 does not belong to H, so a direct expansion
around s = 1 cannot be performed.

Wiles-Taylor Theorem (1995): Let E be

an elliptic curve defined over Q. According to the
Wiles-Taylor theorem, L(E, s) can be analytically
continued to the entire complex plane C.

This implies that L(E, s) is analytic so is
differentiable at s = 1.

Analytic Rank: The analytic continuation
allows the Taylor series expansion of L(FE, s)
around s = 1:

L(E,s) =c(s—1)" + ki(s—1)™" ...

where ¢ 7% 0, and the analytic rank r,,, of E is m.
If L(E,1) # 0, then the analytic rank is O.

Modern Formulation

When we substitute s = 1 into the good reduction
part of the L-function, we get

p
L(E,1) = :
U e,

where p runs over all primes less than the given .
Here, notice that this is the reciprocal of

#E(Fp)
1] .

p

p<x

Now, we can give the modern formulation of the

Birch and Swinnerton-Dyer Conjecture.

BSD Conjecture (1963)

Let E/ be an elliptic curve over Q. Then the algebraic
and analytic ranks of E are the same.

The Birch and Swinnerton-Dyer conjecture
immediately implies that an elliptic curve E has
infinitely many rational points if and only if

L(E,1) = 0.

The conjecture, made in the 1960’'s, has been
studied by many mathematicians over four decades.
Wiles et al.’s work on modularity in late 1999, along
with earlier contributions from Gross, Zagier,
Kolyvagin, and others, proved a partial result toward
the conjecture.

Theorem: Suppose E is an elliptic curve over Q
and that r,, < 1. Then the algebraic and analytic
ranks of E are the same.

The Power of BSD

Example (1) 7 = 0O:

Objective: Show that L(E, 1) # O for
E:y?=2x>+1withr =0.
Method: Compute

P
L(E,1) = :
pslgoo #E(Fp)

Result: The value is approximately
0.5276016202421178.

Interpretation: This confirms that » = 0.

Since » = 0, E(Q) contains only a finite group of
points which is the E(Q)¢ors, and we can show that
E(Q) = 7./67.

The points of E(Q) are
{(0,1),(0,-1),(2,3),(2,—3),(—1,0),0}.

Example 2) r — 2:

Objective: Verify L(E,1) =0, L'(E,1) = 0,
L"(E,1) #0for E : y* = x° — 34°x.
Method: Compute the L-series and the derivatives
at s = 1 using finite differences (h = 107°).

Result:

L(E,1) =~ —1.16658388158845 x 10~ 1'%,
L'(E,1) =~ —1.59460547815251 x 107,
L"(E,1) = 12.7703039565201.

Interpretation: This confirms that r = 2.

Now, for F : y2 — a3 — 34%x with rank r = 2,
consider the product

+E(F,
T ( ),

p<1000 p

and dividing it by log? 1000, yields a constant.

Result: The value is approximately
0.6558212571499893.

Interpretation: The normalized product is
constant, confirming the prediction of the BSD
conjecture in its classical formulation with » = 2 for
this example.

For the above example, we can show that
E(Q)ios =EZ/27 X 7./ 27..

The points of E(Q)ors are
{(34,0),(—34,0),(0,0),O}.
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